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Abstract—We investigate a three-species omnivory model with 

non-linear Holling Type II functional and numerical responses. As 
estimates from natural systems, the model parameters are subject to 
natural intrinsic variability and measurement error. We use sensitivity 
analysis to determine how infinitesimal changes in parameters, 
corresponding to variability and error, affect the population densities. 
We show that the handling times are less sensitive with the search 
and mortality rates being the most sensitive.  
 

I. INTRODUCTION 
mnivory is defined as the act of feeding on resources at 
different trophic levels [1]. In particular, we investigate a 

model incorporating intraguild predation which is a three-
species subset of omnivory. The model has nonlinear Holling 
Type II functional and numerical responses. We approximate a 
natural omnivory system with a deterministic model of 
differential equations so there is a certain amount of natural 
intrinsic variability that our model inputs are subject to. Also, 
our thirteen model parameters are limited by measurement 
error. These errors affect the outcomes or solutions to our 
model.  

We use sensitivity analysis to determine how small changes 
in model parameter values affect the population densities. 
There are many variations and applications of sensitivity 
analysis (see [2], [3] for example). Our method involves the 
use of analytical tools to evaluate how infinitesimal changes in 
parameters affect the state variables. This will help us 
determine which parameter estimates are sufficiently precise 
for our model to give reliable predictions based upon the 
dynamics of our model. Also, we will be able to prioritize the 
parameters to help biologists determine which parameter 
values should be more closely estimated from empirical data. 
This in turn should dictate an increase in precision and 
accuracy with which biologists collect data for specific 
parameter estimates. Reference [4] used sensitivity analysis to 
study the parameters of a linear response omnivory model.  
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II. OMNIVORY MODEL 
We investigate the model given by [5] which consists of a 

coupled system of differential equations with the functional 
and numerical responses being nonlinear functions of the basal 
resource density, R, and intermediate consumer density, C. 
Thus our model is governed by dynamics in which a top 
predator, P, feeds on the basal resource and intermediate 
consumer and the consumer feeds solely on the resource (see 
Fig. 1. 
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with initial conditions 0)0( 1 >= cP , 0)0( 2 >= cC , and 

.0)0( 3 >= cR  

 
Fig. 1 illustration of three-species omnivory.  Arrows indicate 

that one species (base of arrow) is eaten by another (point). 
 

Parameter ijλ  is the search rate of species j for species i, ije  
is the efficiency with which species i is converted to new 
offspring of species j, and ijh  is the time spent by species j 
handling species i. K is the resource carrying capacity and r is 
the intrinsic rate of increase of the resource. The natural 
mortality rates of the predator and consumer are Pm and Cm  , 
respectively.  
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III. SENSITIVITY ANALYSIS 
To use available theory from Rossenwasser [3], we write 

our system of coupled differential equations in the form  
 

( )3211
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dt
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( )3211
2 ,, xxxF

dt
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( )3211
3 ,, xxxF
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where ,jx 3,2,1=j  represents the P, C, and R species 
densities respectively. We represent each parameter by 

,iα .13,,2,1 =i  
We define the sensitivity of state variable jx with respect to 

parameter iα as 
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for 3,2,1=j  and .13,,2,1 =i  

 Then by differentiating each equation in the system above 
with respect to each of the parameters and interchanging the 
order of differentiation, we derive a linear system of 
differential equations for the sensitivities, called the sensitivity 
equations 
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as given by [3]. The above mathematical manipulations require 
that  
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be continuous with respect to independent variable t and state 
variables kx  for all 3,2,1, =kj  (see [3]). 

Also, we must differentiate the initial conditions with 
respect to each parameter and thus 
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for each 3,2,1=j  and .13,,2,1 =i  It should be noted that 

k

j

x
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∂  remains the same for each parameter and 
i

jF
α∂

∂ changes 

for each parameter.  
 We use the term general sensitivity equations for the system 
of linear ordinary differential equations  
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since the terms 
k

j

x
F

∂

∂  remain the same for each parameter. 

We use the term particular part of the sensitivity equations for 
the terms 
 

i
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since they change for each parameter. Tables 1, 2 and 3 give 
the partial derivatives computed from (12) for each of the 
thirteen model parameters. 

The general sensitivity equations for our nonlinear response 
omnivory model are 
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The sensitivity equations are then formed by adding the 

particular part of the equations to the general sensitivity 
equations.  For each parameter we must simultaneously solve a 
system of three linear differential equations for the sensitivities 
with respect to that parameter. However, the sensitivity 
equations are forced by the original system of nonlinear 
equations. Thus, to compute the sensitivities we solve seventy 
eight equations in groups of six. To solve the original 
equations we use the parameter values taken from [5] listed in 
Table 4.    

We numerically solve the linear sensitivity equations and 
the nonlinear model equations using a fourth- and fifth-order 
adaptive step size algorithm known as ode45 in the computing 
software Matlab. This is a Runge-Kutta-Fehlberg method that 
simultaneously obtains two solutions per step in order to 
monitor the accuracy of the solution and adjust the step size 
according to user-prescribed tolerances on the error. We use 

3101 −× for the relative error and absolute error tolerances with 
initial condition ( )T1,1,1 for the nonlinear model and initial 
condition ( )T0,0,0 for the sensitivity equations.  Although 
numerical integration introduces errors and thus variability 
into the system, this variability is minimal ( 3101 −× ) and 
necessary since there are no known analytical methods to solve 
the nonlinear equations.      

Since there are three state variables, there are three 
sensitivities for each parameter. So we define the weighted 
norm 
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for each 13,,2,1 =i as a performance measure of how small 
changes in the parameters affect the state variables.  Notice 
that this performance measure is a function of the parameter 
and time only. For our calculations we let each weight be equal 
to one so that each of the state variables is weighted equally.  
Unbalanced weighting could be used if a state variable was 
considered more important in terms of the performance 
measure.  Also, if the sensitivities are extremely different in 
magnitude then a weighted norm provides a way to ensure that 
each sensitivity has approximately the same impact upon the 
performance measure.  In our case, we didn’t feel that the 
difference in magnitude of the sensitivities corresponding to a 
single parameter was significant and thus chose equal 
weighting.          

IV. RESULTS 
Based upon the numerical values of the performance 

measures of the sensitivities over time, we define three classes 
of parameters: small, medium, and large. Fig. 2 depicts the 
graph of the performance measure of the large sensitivities, 
Fig. 3 depicts the graph of the performance measure of the 
medium sensitivities, and Fig. 4 depicts the graph of the 

performance measure of the small sensitivities. Notice the 
changing scale on the vertical axes. In the legends of the 
graphs, the handling times, ijh , are denoted by Handling ij , the 
conversion efficiencies, ije , are denoted by Efficiency ij , the 
search rates, ijλ , are denoted by Search ij , and the mortality 
rates, im , are denoted by Mortality i , where i,j are the 
appropriate P, C, or R as given in (1), (2), and (3). Notice that 
in all three plots of the performance measures (Figs. 2, 3, 4) 
the values of the performance measures vary over time but 
eventually level to a steady state. This is because the parameter 
values listed in Table 4 lead to a steady state solution of the 
original model with all three species present. For analysis on 
the parameter space that leads to all three species present also 
known as permanent coexistence for this model see [6]. 

As shown in Fig. 2 the performance measure or the norm of 
the sensitivities is the largest for the predator natural mortality 
rate with a maximum value of approximately 240 and steady 
state value of around 140. This indicates that small changes in 
the predator natural mortality rate cause the largest change in 
the model solution. So variation in the predator mortality rate 
due to measurement error and/or natural intrinsic variability 
affects the population densities in a greater way than the other 
parameters. To give an overall ranking of the parameters we 
consider the value of the performance measure per parameter 
at steady state since there are many oscillations in the 
performance measures over time until steady state is reached.   

The performance measures for the intermediate consumer 
natural mortality rate and the search rates are quite similar with 
maximum values ranging from 25 to 110 and steady state 
values ranging from 40 to 60. However, ranked by steady state 
performance values, the most sensitive parameters in Fig 2 
after the predator mortality rate are the parameters listed in 
decreasing order RCCCPRP m λλλ ,,, .  

For the intrinsic rate of basal resource increase and the 
conversion efficiencies all with medium performance measures 
in Fig 3, the maximum values range from 2 to 12 with steady 
state ranges of 2 to 7. Ranked by steady state value the next 
most sensitive parameters are listed in decreasing order 

reee CPRCRP ,,, .   
Fig 4 shows the performance values for basal resource 

carrying capacity and the handling times. These parameters 
with smaller sensitivities listed in decreasing order 

CPRCRP hhhK ,,, have maximum values ranging from 0.1 to 
1.7 and steady state values ranging from 0.1 to 1.2 

V. CONCLUSION 
The most sensitive parameter is the predator natural 

mortality rate. In general, the mortality rates and search rates 
are the most sensitive with conversion efficiencies and basal 
resource parameters at intermediate levels. Handling times are 
less sensitive with the time spent by the predator handing the 
consumer being the least sensitive. 

For parameters with larger sensitivities biologists should 
take extra care in the field or lab collecting data for that 
parameter value. Thus biologists should pay closer attention to 
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data collection for the mortality rates. Biologist need not be as 
accurate in collecting data for the handling times since they 
affect the species densities the least. This ranking is important 
since research projects have limited funding and confined time 
frames for completion of data collection.   

It should be noted that biologists have no control over the 
natural intrinsic variability in the model parameters. Thus to 
use the model for species density predictions and management 
decisions requires a concerted effort to reduce the 
measurement errors that can be controlled. This is another 
important contribution of our sensitivity analysis.   

The ranking of the parameters may be affected by the use of 
a weighted norm performance measure since it is a global 
measure. A relative measure could provide additional insight 
into how sensitive the parameters of our three-species 
nonlinear response omnivory model are to small changes 
corresponding to natural intrinsic variability and measurement 
error.   

 
Table 1 partial derivatives of the right hand side of (1) with 

respect to the model parameters. 
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Table 2 partial derivatives of the right hand side of (2) with 

respect to the model parameters. 
Parameter Partial Derivatives of 2F  

r 0 
K 0 

 ( )21 Rh
RCe

RPRP

RC

λ+
 

 ( )21 ChRh
RCPh

CPCPRPRP

RPCP

λλ
λ

++
 

 
( )

( )21
1

ChRh
RhCP

CPCPRPRP

RPRP

λλ
λ

++

+
−  

 
( )

( )2

22

1 Rh
CRe

RCRC

RCRC

λ
λ

+
−  

 ( )21 ChRh
RCP

CPCPRPRP

CPRP

λλ
λλ

++
 

 
( )

( )2

22

1 ChRh
PC

CPCPRPRP

CP

λλ
λ

++
 

 Rh
RC

RCRC

RC

λ
λ

+1
 

 0 

 0 
 C−  

 0 
 

Table 3 partial derivatives of the right hand side of (1) with 
respect to the model parameters. 

Parameter Partial Derivatives of 3F  
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Table 4 parameter values for the nonlinear response omnivory 

model. 
Parameter Value 

r 0.3 
K 3 

 0.037 
 0.025 
 0.025 
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Fig 2. plot of the performance measure for large 

sensitivities over time. 
 

 
Fig. 3 plot of the performance measure for medium 

sensitivities over time. 
 

 
Fig. 4 plot of the performance measure for small 

sensitivities over time. 
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